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ABSTRACT

Perturbation theory in celestial mechanics has a long, rich history of

failure stretching back to Newton. I believe that the causes of this are

two-fold. One problem is the difficulty of dealing with the mathematical

structure used in celestial mechanics to express perturbation theory as

opposed to the constructs used in field theories (eg. trajectory equations vs.

linear second order partial differential equations). The second flows

directly from this and relates to the misapplications of certain mathematical

techniques (averaging, series expansions) within the context of perturbation

theory. These incorrect analyses usually appear in second-order theories such

as Kozai's (1959) artificial satellite theory. Ideally this report would

clearly illustrate the nature of these difficulties utilizing a complex (but

exactly soluble) physical model intimately tied to the two-body problem and

then go on to lay the foundations for a new perturbation theory. I believe

that that's exactly what is accomplished herein except that the hints of the

base of this new mathematical formalism are severely limited. The exactly

soluble physical model is the three dimensional harmonic oscillator compli-

cated by anisotropic terms, anharmonic terms, and air resistance. The deep

connection is provided by Bertrand's theorem which is also proved.
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I. INTRODUCTION

There is no problem in celestial mechanics that perturbation theory

provides a satisfactory solution to (of which I am aware). Saturn's rings,

the Kirkwood gaps, Jupiter's satellites, the Sun-Jupiter-Saturn system, etc.,

all exhibit resonances, unusual structures, or some other peculiarity not yet

deduced from celestial mechanics. Celestial mechanics may provide explanations

(as in the fact that the Kirkwood gaps occur at simple multiples of Jupiter's

mean motion) but not predictions. Why is this state of affairs so poor? I

*, believe that the reason is two-fold (at least). First of all celestial

* mechanics is a trajectory theory and not a field theory. The field theories

with good perturbation techniques rely on linear second order differential

equations not non-linear first order ones (eg. the Hamilton-Jacobi equation).

Secondly the mathematical nature of the problem in celestial mechanics is

compounded by a poor choice of coordinate systems. It does no good to express

perturbation theory in terms of the orbital element set, because we will then

immediately and intuitively understand the result, if we can never solve any

problems in this coordinate system. This becomes compounded when our frustra-

tion with our failures further leads us astray in the use of unjustifiable

analytic techniques. Examples of the latter include incorrect power series

expansions and the method of averaging.

It is possible that the reader is not as aware of the shortcomings and

pitfalls of the misapplications of perturbation theory in celestial mechanics

as the above paragraph suggests is the case. This report will serve to inform

the reader of the situation by a carefully constructed sequence of illustra-

tions. As the nature of the demonstration is by counter-example, it follows

. . . .. . .. l" f . . . . . . . . . ..... . ..." -.



that each counter-example must in itself be exactly soluble. Moreover it is

clear that no such meaningful example is likely to come from the normal realm

of problems dealt with in celestial mechanics. However it would be preferable

to deal with a system as close to the two-body problem as possible. The

existence of Bertrand's (1873) theorem is used to find the suitable connection

and the alternative physical model--the three dimensional, isotropic, simple

harmonic oscillator.

Bertrand's theorem simply states that of all possible central force

potential functions only two give rise to bounded, closed orbits. One is

the two-body potential (-k/r) and the other is the isotropic, simple harmonic

oscillator (kr2 12). The next section follows Arnold's (1978) demonstration

of this result. Following that, motion under the three dimensional, isotropic

simple, harmonic oscillator potential is discussed (the orbits are ellipses

with force center at the center). A perturbation theory for these orbits is

developed and a set of first order differential equations is derived. These

are exactly analogous to Lagrange's variation of parameter equations in the

two-body problem.

The fourth Section deals with the mathematical foundations of perturba-

tion and an attempt to use the variation of parameters equations when a

perturbation yielding anisotropy is applied. This attempt very closely

follows Kozai's (1959) artificial satellite theory in format. The purpose

is not to criticize Kozai but rather to illustrate the invalidity of a

technique widely used in celestial mechanics. This section concludes with

the development of a new set of variation of parameters equations utilizing

a different set of constants (that is other than the orbital element set).

2
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In this representation the perturbation equations are exactly soluble to

all orders--indeed the whole system is exactly soluble in closed form. The

misleading inferences of the classical approach can be clearly seen now.

The fifth section introduces anharmonic perturbations. These too, in

the right basis, present a set of perturbation equations for which we can

obtain the solution to all orders (explicitly) as well as in closed form.

This further elucidates the nature of the failings of other approaches.

In the final section I discuss non-conservative perturbations due to

drag and "third-body" forces for the harmonic oscillator. This is very

short as are some remarks concerning additional representations. By now I've

proved my points and our energies should be devoted to productive rearrange-

ments of perturbation theory for the two-body problem.

3.

3
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* ,1. BERTRAND'S THEOREM

According to Plummer (1908), in 1873 Bertrand proved that the inverse

. square law force and the direct linear force law are the only two central

force laws, derivable from a potential function, which yield bounded closed

orbits. On pages 2-9 of his book Plummer presents a "proof" of this result.

Goldstein's second edition of Classical Mechanics (1982) reproduces Plummer's

result in modern language. It does not appear to me that this proof is

rigorous. Arnold (1978), without ever mentioning Bertrand, does provide the

outlines of a rigorous proof of this result. While I shan't fill in all of

the analytical steps for the reader, immediately below I flesh out Arnold's

logic. The importance of the result for this discussion is that it yields

a deep connection between the two-body problem and the three dimensional,

isotropic, simple harmonic oscillator problem. (I felt it incumbent upon me

to debunk the misapplications of perturbation theory via a physical situation

either identical to the I/r potential or intimately associated with it.)

The logic of Arnold's argument can be simply outlined. First of all,

if all bounded orbits are closed, then since a circular orbit is always

possible for a central force, all nearly circular bounded orbits should be

closed too. Moreover this (eg. being closed) must be true independent of the

radius of the circular orbit. The implications of these statements are that

the potential energy is either a power law U(r) = Arp (p>-2,pO) or a

logarithmic function U(r) = Btnr (the p=O case). By considering the con-

straints of "closedness" on the apsidal angle Arnold then shows that the

logarithmic case can not be closed while there are two possibilities for

the power law case. These two deal with positive power laws (p>O) and the

4
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meaning of bounded and with negative power laws which yield infinitely tight

binding. After an examination of these two limiting cases it turns out that

only p=+2 and p=-l are left. QED.

The conservation of energy equation for a central force after the usual

reduction to the equivalent one-body problem (cf. Eq. 2 below) yields

_- ... 2 L2
- +__ + U = E

2mr

Hence the "pseudo-potential energy" V = U + L2/2mr2. From this we have that

dt +_ dr [2(E-V)/mJ /2

and from L = mr%,

0 /(L/r2) d r

f[2m(E-V)1I12

Orbits exist such that E > V(r) for a fixed value of L. This inequality

gives one (or several depending upon V) regions with

0 < rmin <r < rmax <

Clearly if 0 < rmi n < rma x < then the motion is bounded (rma x < ) and

also takes place in the annulus with inner radius rmin and outer radius rmax.

As 0 increases r varies between these two limits. The angular extent between

successive apsides (extrema of r) is called the apsidal angle. It is given

by the expression

rmamx(Llr2)dr

{2m[E-V(r)1}I
rmin

1.0



A closed orbit is one such that E is commensurate with 27. Finally in the

special case when E is equal to a minimum of V then rmin - rmax = R and the

orbit is a circle of radius R. Now that the stage has been set, the argument

can be filled in.

First let us calculate the value of e for a nearly circular orbit. Since

the orbit is nearly circular E must be slightly larger than the minimum value

of V. Near r=R V can be written as (since it's a minimum V(R) 0, V"(R)>O)

2
V(r) = V(R) + ) V"(R)2

The extremes of r are found by solving E-V(r) = 0. They are

R + {2[E-V(R)]/V(R)
I /2

with rmax given by the plus sign and rmin given by the minus sign. Use the

definition in Eq. (1) of 0, plus the change of variables

1/2

x =(r-R) "R

to get

1 /V"R] /2  1 dx f2lE-V(R)] 1/2 -2

(xL/iV"(R)[ + x V"(R

O-

so

0cr L/R v/V7"(R) m

6



. ..

......

In terms of U,

Oci rc ,E[U'f(3U'+RU")]/
1 2/, -

Now impose the fact that we want this result to be independent of the

value of R. This simply means that

U
3U' +RU" = constant

Choose the form of the constant to be l/(2+p) and integrate. One gets

directly that

U = Arp (p>-2,p0O) or U = BRnr

within an arbitrary, unimportant, additive constant. From the formula for

0clrc we now get that (set m=l)

ecirc = 7r/(2+p) I/2  (p=O is the logarithmic case)

This completes the first part of the result.

If p=O (the logarithmic case) then 0circ r//2 which is not a rational

multiple of 2w. Hence this functional form can be dismissed from further

consideration. If p>O then as r-.o, U(r)-. Therefore, to remain bounded, E-0a

too. The general limit as E-c of 0 is w,/2. To see this make the change of

u=L/r in Eq. (1). Then

Umax dx

0 = f {2m[E-W(x)]}/ 2

Umin

7
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2p

where W(x) =(L/x) + X2/2m. Further let y = X/Umax SO

0 f dy/{2m[w(l)-w(y)]}I/2

Ymin

where w(y) y2/2m + U(L/y u )/u2  . Clearly as E- , Umax+ Yminmax max*mx Yi

and the last term in w is negligible. The w/2 result follows after a trivial

integration. Now if ff/(2+p) 1/2=w/2 for p>O, p=2 and we have the isotropic

harmonic oscillator as a possibility.

The last piece involves p<O. Here there's the possibility that E---

as r-O. First we show that in general as E--, e=w/(2-q) for power law

potential energies U = -kr- , qc(0,2). The proof is as above and leads to
1

0 = f dx/(xq-x 2)l/2 = 7/(2-q)

0

(This is one of several misprints in this section of Arnold's book.) Now

replace -q by p and demand equivalence with the circular orbit result or that

n/(2+p) =/(2+p)

Only p = -l satisfies this case--the inverse square law.

8



II1. THE ISOTROPIC, THREE DIMENSIONAL, SIMPLE HARMONIC OSCILLATOR

Just to be sure that we understand the terminology the potential energy

is U = kr2/2. The force constant is k and it is the same in all directions

(isotropic). If the force constant differed in different directions, then

U = r*zr/2 where k is now a diagonal tensor

/k 0 0
(x o

k = 0 ky 0

0 0 kz

This would be an anisotropic, three dimensional, simple harmonic oscillator.

Since r2=x2+y2+z2 this explains the three dimensional aspect. The simple

harmonic part is due to the fact that U is quadratic in x,y,z. The resulting

motion is then sinusoidal with a period independent of the amplitude. The

next Section discusses anisotropic oscillators and the one following that

anharmonic ones.

The force is F = - VU = -kr mr. Energy conservation is obvious and

we set

E= U+ "  >0 (2)

Furthermore since F is central L = r x m r is a constant vector. Therefore

the orbit lies in a plane given by r L = 0 and the problem can be reduced

to a two dimensional one. Set

L = L (sini sinsP - sini coso, cosl) (3)

9



.1

where i (the inclination) and Q (the longitude of the ascending node) specify

the orientation of L and L is its magnitude. Finally introduce polar coordi-

nates r,6 in the orbital plane so that the equations of motion are

m(r - r62 ) = f(r) = -dU/dr = -kr

m d r2

(r e)= 0

A. The Orbit

As usual introduce Binet's transformation u = /r and switch from time

derivatives to derivatives with respect to 0 via (prime = d/de)

= r'b = -u'e/u 2 = -Lu'/m

Then we find thdt the equations of motion are

+U -mf~u I  _ mk
u" + u = -u L 3  (4)

Define the mean motion n by

n2 = k/m (5)

A single integration of Eq. (4) gives

(u)2= constant- (u2 + -m2n2)

Comparison with the conservation of energy equation (2) in the u form shows

that the constant is 2Em/L2. Hence,

Wu ) 2 (u? u2)(u 2 -  .o..
2

1U

10



where

U2- 1 /a2, u? 1 1/b2 _ 1 /a2(1-e2)

and
L2/m E+(E 2 _L 2 n 2 1/2

r2  =a2 = 
2 m=~(6a)

max = E-(E2-L2n2) /2  mn2  (6a)

2 b2  a2(l-e 2  L 2/m - (E2-L2n2 1/2 (6b)-1rmi n E(E 2_ L 2n2 1 /2 m 2

E+(E -Ln ) n

At r = a or b F = 0 and r' = 0 hence their identification with the extrema of

r.

Suppose that the motion starts at 0 = 00 where r = a. Then thereafter

r' < 0 so

u xdx +

f [(b_2 x2)(x2-a.2 )]/2
1/a e0

or
r2~ a2'2

l-e +e sin (-0)

Without loss of generality choose 00=0 and let another orientation angle, w,

define the line of the major axis ("the argument of periapse"). Then

r2  = a2(l 'e2 ) 7

r 2 2 2(7)
l-e +e sin 0

is the equation of the orbit. If rcose, n = rsine are rectangular

11



coordinates in the orbital plane, then this is equivalent to

2 /a2 + n2/b2 =1

This is the equation of an ellipse, center at the origin, major axis a, minor

axis b (and therefore eccentricy e), whose major axis (the line of apsides)

lies on n = 0.

B. The Time Dependence

Return to the conservation of energy equation (2) and solve for 2,

*2 n2  2 2 2 2r2 : -2-(a2.r2)(r-.b2)

r

Suppose r=a, e=O corresponds to t=T ("the time of periapse passage"). Since

a> r, r< 0 for t>T so

r t
xdx - t

a [(2 _x2 )(x-b 2))177a T

or

r2 = a2 cos 2M + b2 sin 2M (8)

where the mean anomaly M=n(t-T). Note that B is the true anomaly and the

"eccentric anomaly" too.

However r2 = {2+n2 so

= acosM, n = bsinM (9)

12



Note too that L =mr 26 2mdA/dt where A is the areal rate. Whence,

L =2m(7nab/P) =mnab (10)

where the period is P = 2wr/n.

To determine the time dependence of 0 use L=mr 8 and the expression (8)

for r (t), viz.

o t

fdo= f 2 2 .2P
T a2Cos p+b sin~

The result is

tan@ = (-e2) 1  tanM, M=n(t-T) (11)

This is "Kepler's equation".

To summnarize the three dimensional motion is given by

/sine cosM
= r cose =a(1-e

2 ) sin) (12)

where the unitary rotation matrix S=R3(-f2)R 1(-i)R 3(-w). The R matrices are the

usual elementary rotation matrices. The angular momentum has already been

given; the energy E is

2 2
E= - (2-e) (13)

13



C. A Perturbation Theory

Now, because we want to consider more complicated physics but our

analytical capabilities aren't up to solving the more realistic problems,

we need a perturbation theory. Since our knowledge of analytical geometry is

almost intuitive we'll feel more comfortable if the perturbation theory is

expressed in terms of the orbital element set a = (a,e,w,iQ,T) or some

function thereof. Hence, confining ourselves to a conservative disturbing

force +n7R for the moment, we derive the perturbation equations equivalent to

mr =-mVU + mVR

where U is the zero'th order potential. So set r = r(a,t) and derive that

ar
Va Tt VR

Along the way I've imposed the condition of osculation on r,

r= ar/at or V a r a 0

. so that both locations and velocities can be computed from the usual

. (eg. unperturbed) formulas. Finally we rearrange all of this via Lagrange

brackets to read

6
Latak]ak = DR/Ba (14)

where the Lagrange bracket [ag,ak] is defined by

14



[a,ak] = ( 3 a x + (x-y) + (x-z) (15)k k ap, 5 k  aa k  -5a 9.

We note that d[a.,ak]/dt = 0 so that the Lagrange brackets can be

evaluated at any convenient place in the orbit. I choose M=0 (t=T). We

* further note that there are (')= 15 independent brackets because a Lagrange

bracket is antisynietric and the most there could be is 62=36. The last

point of interest is to remember Eq. (12) for r and realize that there are

three types of Lagrange brackets:

Type I: both atak are one of i,w,sl of which there are

(3)=3 such,

Type II: a is one of i,, but ak is one of a,e,T (or M) of

which there are 3.3 a 9 such and

Type III: both aak are one of a,e,T (or M) of which there

are (3)= 3.

So far this is (formally) Just like the two-body problem. In fact all

of the brackets not involving a are the same as therein and the whole set of

non-zero results is

[aM] = -an(2-e 2 ) = -[Ma]

N [al = -2bncosi = [ a]

[aw] = -2bn- -[wa]

[eM] = a2ne - -[N,e]

ae 2 anecost
(1.e)]/2= -[jj,e]

2
[e,w] = a1necosl =-[w,e]

[i,[a] = abnsini =

m 15

.4e

-p,

.



2 2 2 2Alternatively [Tel = a n e, [T,aJ = an e2 .

The last step is to put these results into Eq. (14) and explicitly

solve for a. One finds

2 112da 1 3R (-e) 1  3R

; -ane2

aan~2ne3 (16)
a ne

de 2l-L./  I R R e3 coti RU- 'a e A a2ne 3  (6

dw csce) (-2 R 3 R ecti

dt n2 (l.2 )l allos

dQL csci aR

dM -1 aR 2(1-e aR
dt nae "  aa2ne 3  "e

na1

M°°,i

F,:

16 -



IV. THE ANISOTROPIC, THREE DIMENSIONAL, SIMPLE HARMONIC OSCILLATOR

Before delving into the main subject of this Section it seems prudent to

me to review the mathematical basis of perturbation theory within celestial

mechanics and its relatives in field theory. This will clearly reveal the

difficulties which those of us who work in celestial mechanics face while

demonstrating our collective blindness to the "right" coordinate system (only

Vinti 0961]has overcome this but in a trivial way). Then the problem will

be completely solved, in a variety of ways, in the right coordinate system.

A. The Mathematical Foundations of Perturbation Theory

Within classical mechanics we deal with equations of motion of the form

F =ma

If we set v = dr/dt, then an equivalent first order system is

v = dr/dt, F = mdv/dt

If F is conservative, F = -VV, then we have

v = dr/dt , -VV = mdvdt (17)

Whenever V is such that we can't solve the problem analytically, we try to

separate it into two parts. One part, represented by U, is such that Eqs.

(17) are exactly soluble, while the other part (represented by -R in the

standard sign convention) makes the problem intractable. The solution of

v = dr/dt, -U = mdv/dt

has six arbitrary constants associated with it, say a. The parametrization

17



of the solution, r = r (a,t), is then used, as discussed above, to formulate

A. Since fRI is small in some sense we can rewrite it as ER where c is a

small parameter. Hence we are led to study the solution of equations of the

form (or systems of such equations)

dy/dx = ef(x,y) , y(xO ) = YO (18)

The development below is independent of the dimensionality of y.

I know of one rigorous method of approximately solving Eq. (18)--Picard's

method of successive substitutions. Glossing over the mathematical details

- (see Ince 1927) we construct the sequence lYnwk
n

x
Yn, (X) = yo+ef f[cYnl( )]dx', n = 1,2,...

xo

The sequence lyn-Yn-l1 converges uniformly and absolutely to a function y(x)

which is continuous and satisfies Eq. (18). The solution of Eq. (18) is

unique and stable with respect to volume perturbations (eg. small changes in

f) and surface perturbations (eg. small changes in yo). That's it in a nut-

shell.

Computationally carrying out the Picard process is enormously difficult

in general. To my knowledge it has never been carried out beyond n=l in

celestial mechanics. The reasons for this are two: the orbital element set

is an extraordinarily poor reference frame which exploits none of the

symmetries of R (or U) and the interesting problems of celestial mechanics

(atmospheric drag, oblateness perturbations, and third-body effects) are

not simple. In an effort to deal with these difficulties other forms of

18



approximation have been tried. One is to try and obtain a solution to Eq. ;

(18) in a power series in e. For instance one would calculate y1 correctly

x

Y1(x) =JX Y0+1 f f(x,$y)dx1
xO0

but instead of computing Y2 fo
x

Y2(x) = y0+ ef f[x1,y1(xl)]dxl
xO

replace y, by its expression,

x

Y2(x) =y+ffxy+ef f(x2 y)x 2 dx
x x0 0

and then expand f in a power series ine (af(x,y) =af(u,v)/avl U=g~ )

x x
= y0+eJ f(x,'y) + c2 f af x13y0)f [fx f x2.Y)dx 2]

xO x xO

If one continues this policy to higher orders--expanding f at each step so

*19



x

xodx

=3x y0 + If x. 0  f~x xyy(x )]d
x0

x x
= YO +if fx 1sy0)+af fx2(x)Id f f~ 2 Y~]x~dxi

xo xo

X 0 X

=O y0 Ef f(xl y0)dxl1+e2 f df(XV y0) { f f~x2,Y0+ef f(x3,YO )dx 3 dx2 dxi
-. xo xo x xo

x x
y 0+ ff f(X,,y0)dx, +C2 f af(xiy0)J {f(x21y0)

xo

or

x x x
=y+EJ f(x1,yo)dxl+,E2 f af(x13y0)[f f(x2 YO)dx] dx1

xo x x
00 0

+ C3 f af(x1,y0){J f f(2'y) [f f(x3 yO)dx3] dx2 dx,
x0  x xo0 ~ 00

Y+ C3term

22



or, in general,

nx  X n-3 x n-2L
Y~ (x Y +e ~'f af(x ,y). (xn 2 C)(f(xn

x0  x x0 0 0

Xn-1

f(xnYO)dXn) dxn1 ) dXn.2 . .dxl

x0 0y

--then one can prove that the sequence fY n converges absolutely and

uniformly to a continuous function of x that satisfies the initial condition.

The series does not satisfy the differential equation. Hence it is useless.

If instead of substituting, expnding, substituting etc. one substitutes

"* . and then expands one gets a different result (beyond Y2 or Y2). For instance

return to Y3'

x

Y3 (x) yo+eJ f[x l,y2(xl)]dxl
x-

x xl

x0  x0

x x x0

00

Now expand from the inside outwards
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x x x

Y3(x)= Yo+Ef f{xl ,Yo +C [f(x2,Yo)+eaf(x2,Yo) (f f(x3,Yo)dx3)] dx2 }dx l

x x x
00 0

=o' , {x,,,o+Ef fo,~x+~a(xY,)o (J~fx~ 0d3  x}x
x x x x

y0+1EJ fx,y+ Ef f(xyo)dx fx'O ffx'od3 x)x
x x

- +ff f(xlYo ) + [f f(x2,Yo)dx2
x x0

xl x

2f af(x 2,Yo) (f f(x3,Yo)dx3) dx 2 ] df(x l ,y O )

x0  x0

x0

+~[~f(x2,yo)dx2]2 fx)~x
xo

through all terms of order f2 (a2f(x,y) = a2f(u,v)/av2 u=xv=y).
This is not equal to Y3 or Y3 but the technique represents a perfectly accept-

able approximation scheme (on the surface). Note too that the Yn expansion

only required that af/ay exists while this will require that all partial

derivatives of f with respect to y exist and be continuous.

The method of averaging is yet another way around the difficulty which

is not rigorous either (so far as I'm aware). Indeed in the next subsection

the use of it on the harmonic oscillator will illustrate it's shortcomings.

Now what does perturbation theory for a scalar field look like? Suppose

that we are dealing with
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V + (k=-x) 0

where the unperturbed problem is

V + (k2-Uo)ip 0

Let the solutions be the complete set of orthonormal eigenfunctions un

-. corresponding to the elgenvalue k2 (degeneracy is an annoyance not dealt

with here). We found these eigenfunctions by exploiting the symmetries of

U, not by restricting ourselves to the same coordinate system for all

perturbations. The approximations to the perturbed eigenfunctions and

elgenvalues are given by

=M un + X L-'up
n ~ kn 7kp

n

p)(n 2Kx +k )XUn(k- (k-
n n npnp n

(k2)A Pqk2+2U2- 2n nn p (nkk-k

2)() 2+ X 2 npp

and for the a'th order

(a U nUp
n+ X 2 al)k +.

a Up... UnUp

nl P ni q nlz
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2 ~ U(k2)(a) k 2 + XU + x2 j Unp pnk nk n p Xk2(a-2)-k2 ] +

a  nppq"  zn2 22 2 2 2
pq ... On (kn-kp2)(kn-kq) ... (kn-k z2)

I've listed these formulas directly from Morse and Feshbach (1953) which the

interested reader should consult. In general these series converge. Note

that here the work consists of calculating the matrix elements of U and

summing the series whereas in celestial mechanics the analytical work never

ends.
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B. The Method of Averaging

Kozai (1959) exploits the method of averaging in order to solve the

main problem of artificial satellite theory. This is defined as to solve

for the motion of a particle under a potential which includes, in addition

to the usual I/r term, the first three oblateness terms assuming axial

symmetry--namely the J2 ,J 3 and J terms. Various developments of the

method of averaging (Lorell, Anderson, and Lass 1964; Lorell and Liu, 1971;

McClain 1977) all refer back to Kryloff and Bogoliuboff (1947) and Bugoliubov

and Mitropolsky (1961) for a basis. If this method has a rigorous foundation

I can't find it. As an example consider the following (pgs. 39-41 of the

last mentioned reference):

We now go over to the discussion of a method for developing

the first instance, asymptotic approximations, for the case of

oscillations defined by a differential equation of the form:

d2x 2x= Ef (x, t), (1.1)+t 2

where c is a small positive parameter. We can arrive at the

correct formulation of this method if we start from the physical

concepts defining the character of the oscillatory process.

When perturbation is absent i.e. when e 0, the oscillations

will, evidently be purely harmonic,

x = a cos

with a constant amplitude and a uniformly rotating phase angle:
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da S ("Wt+O)

(the amplitude a and the phase 0 of the oscillations will

be constants over time, depending on the initial conditions).

The existence of non-linear perturbation (s#O) results

in the appearance of overtones in the solution of equation

1.1), a factor that establishes dependence between the

instantaneous frequence d and the amplitude, and finally

gives rise to a systematic increase or decrease in the

amplitude of the oscillations, depending upon whether the

energy is expelled or absorbed by the perturbing forces.

All these effects are obviously in the limiting case (e=O).

With all this in view we shall seek a general solution

of equation (1.1) in the form,

x acos* + cul(a,*)+ c2uz(a.*) + c u3(a, ) + (1.2)

Here ul(a,), u2(a,*)... are periodic functions of the angle

ip with a period 21 and the quantities a, are functions of

time defined by the differential equations:

da - + c2A2(a) +

(1.3)

rtdtw + c l a  22a .

26
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We are to choose suitable expressions for the functions
ul(a,p), u2(a,*)..., Al(a), Bl(a), A2(a), B2(a),... in such a

way that the equation (1.2), after replacing a and *, by the

functions defined in equations (1.3), would serve as a solution

of equation (1.1).

As soon as this problem is solved and explicit expressions

for the coefficients of expansions occuring in the right-hand-

sides of equations (1.2) and (1.3) are obtained, the problem of

integrating equation (1.1) is reduced to that of integrating

equations (1.3) which have separable variables, thus making the

investigation possible with the help of well known elementary

methods.

We note that in the case represented by equation (1.1) we

might establish the convergence of expansions (1.2), (1.3) under

very general conditions for the function f (x)

However, since in future we will have to deal with cases

in which similar expansions apparently diverge, we will not tie

up the development of our method of the construction of asymp-

totic approximations with any proof of convergence.

I find it difficult to be so cavalier. What we're supposed to do is

take R
2 2 2 2 22 1/22

R =-n 2 z2 /2 =-(en 2a 2/2)sn 2 [sin(cosM+(l-e ) cosu ItnM]

and form <R>,

27
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2t

<R> 7-r f RdM

0

-en2a2  2 2) /2sin i[wsin 2 w + 2(I0ncos 

+ (1-e2 )cos 2 ] (19)

_ - 2sini [sin2w+(l-e 2)cos2 ]

If a term of <R> depends upon an element that has a secular term, and the

dependence upon this element is period (eg the sin 2W,cos2w terms), then we

are to say that these are long periodic terms. If the dependence is not

periodic, then these are secular terms. R-<R> represents the short periodic

terms. Does <R> have a secular term? Yes if you say rewrite it as

<R> -cn2a2sin 2 i (l-ecos 2)4

for then

Rsec = -en2a2sin 2i/4

Rsp =RRsec -Rp

No if you don't. Apparently the method of averaging and the assignment of

terms to various parts of R depends on one's mathematical sophistication.
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Ignoring the above dilemnas let's turn to the solution for the orbital

element sets. We're supposed to obtain the short period changes in a, e,

etc. by using Rsp in Eqs. (16). This is fine for first order effects except

for the 3R/aM terms because the operations 3/9M and fdt don't commute. To

evaluate the first order secular terms one proceeds in a similar fashion.

In both instances one regards the orbital elements appearing on the right

hand sides of Eqs. (16) as constants. Again this is fine for first order,

short term (times < P/e) results. Finally one is supposed to obtain the

long period changes by an exactly analogous procedure. Since w varies by

2ff on a time scale of P/c, the periodicity isn't apparent until a duration

2
of order P/ 2, and regarding a,e,i,etc. to be constants for this long is

of dubious validity.

I have not repeated these computations here because they're apparently

not rigorous, they don't illuminate the nature of the motion (short term,

secular,or long term) and they can't be carried out in an unambiguous

fashion (if I can't have rigor, I at least demand explicit instructions).

Had I produced the results and interpreted them, I would've drawn some

interesting, and false, conclusions regarding the motion (remember that

this is an exactly soluble problem whose solution is periodic). Hence I

intend to turn to a removal of part of the problem associated with perturba-

tion theory in celestial mechanics--the orbital element set is a terrible

basis for a coordinate system.
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C. A New Representation

The above "solution" of the perturbation equations leaves much to be

desired--like an answer. The problem is the basis of the representation

a = (a,e,w,i,f4T). Go back to the original, unperturbed equations of motion

(U = kr2/2),

mr = F = - VU = -kr

The general solution is

r = Acosnt + Bsinnt (20)

where, cf. Eq. (5), n2=k/m. If we add a perturbing force +nVR the values of

A and B will no longer be constant. Let's develop a perturbation theory for

a = (A,B) now. Well the work is all done and is given by Eqs. (14,15). Once

again there are only 15 independent Lagrange brackets to evaluate since 21

of them obviously vanish. These are of three types too:

Type I: both a,,ak are one of the elements of A of which

there are (3 = 3 such,

Type II: aj is one of the elements of A.but ak is one of

the elements of B of which there are 3"3=9 such, and

Type III: both a,,ak are one of the elements of B of which

3there are (2) = 3.

All Type I and III brackets vanish as do the "non-diagonal" Type II's.

The only non-zero ones are

[A xB = [A ,By = [A z,B = n
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and their negatives. The simplicity of this result already makes one

suspect that this is a very nice basis.

The perturbed equations of motion are

mr - -kr - (k-k)z(0,0,1)

Let k k(l+c) with IeI«1 as before. Then R - cn2z2/2 or

R = 2 (Azcosnt + Bzsinnt)2

The variation of parameters equations are just

Ax -A B =B 0
y x y

Az = cn(Azcosnt + Bzsinnt)sinnt (21)

Bz W -cn(A zcosnt + B zsinnt)cosnt

Much simpler it would be difficult to imagine. Moreover because these

equations are first order, linear, ordinary differential equations with

polynomial or exponential coefficients Picard's method of successive approxi-

mations can be carried out, explicitly, to all orders.

Let the zero'th order approximation be denoted by A (O),B (0). Thesez z
are simply related to the initial values for z and z in the unperturbed case,

z(0) = A (0), z(O) ; nB (0)

Using primes to indicate the order in Picard's method we have, successively
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=en[A~ (O)cosnt + B~ (O)sinntlsinnt

B' -cn[A (O)cosnt + B (O)sinntjcosnt

Aj Az (0) + (e/2)A (O)sin nt + (c/2)B z (O)(nt-sinntcosnt)

8; B(0) - 2e28(Osnnt -(c/2)A~ (O)(nt+sinntcosnt)
(e2) (0s

=en(Azcosnt+Bsinnt)sinnt

zA

B" =-en(A Icosnt+B'lsinnt)cosntzzz

All= A' I- /) 0[ t 2+(sinnt-2ntcosnt)sinnt] +

2(C /16)B z (O)(3sin2nt-4nt-2ntcos2nt)

B=Bz + (C /8)B (0)[-n t +(3tinnt-2ntcosnt)sinnt]

z z

z z z

III n(Allcosnt+B"sinnt)cosnt

etc. We see short period terms, secular terms, and mixed terms in the above.

Long period terms will never appear though.

The advantages of the A,B representation over the orbital element set

representation should be clear now. Since Picard's method can be rigorously
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applied to all orders all we need to do is sum the series to get closed form

results for Az and Bz. Of course for this problem a much simpler course is

available to us for there's an even better basis than the A,B one.

Define a and a via

a= Azcosnt+B zsinnt, 8 = -Azsinnt+Bzcosnt (22)

They satisfy

a- nO, =-n(l+)

or

a = -n2 (l+)a

The solution to this can be written down by inspection,

a = Ccosvt + Dsinvt

where C and D are the arbitrary constants of integration and

V n n2(l+C)

Also 8 = &/n = (v/n)(-Csinvt + Dcosvt). We can recover Az and Bz from

Eqs. (22).

Az = acosnt-8sinnt, Bz = asinnt+ocosnt

Or
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Az = C[cosntcosvt+(v/n)sinntsinvt]

+ D[cosntsinvt-(v/n)slnntcosvt]

Bz  C[sinntcosvt-(v/n)cosntsinvt]

+ D[sinntsinvt+(v/n)cosntcosvt]

We can also identify C and D as

C = A (0), D = (n/()Bz{0) = Bz (OY+) I / 2

Complete success--the exact, analytical solution of the perturbation equations.

It's appropriate now to reflect on our accomplishments. First of all we

found a basis for the development of a perturbation theory (a set of arbitrary

constants) which yield a much simpler set of variation of parameter equations

that we would've expected. Secondly we can solve this by actually implement-

ing Picard's method of successive approximations. Hence, we now know that a

solution exists, it's continuous, it's unique, etc. Moreover, for this

problem, the n'th order successive approximation in Picard's method is of

order en. This coincidence is due to the linearity of Eqs. (21). See the

next section for a counterexample to this result as a general proposition.

Thirdly the full set of variation of parameters equations are exactly soluble

in closed form. This reflects the fact that the original problem was

analytically tractable (since a = z, a = i/n) and the choice of the correct

representation. Finally should one choose to expand the direct solution for

AzB z in Eqs. (23) in a Taylor series in c one will recover, order by order,

the successive steps of the Picard scheme. As I wrote above, a complete success.
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One last point. An argument used in favor of the orbital element basis

for perturbation theory was that doing so made the interpretation of the

results easier. I claim that the form of Eqs. (23) makes it crystal clear

that the three dimensional anisotropic, simple harmonic oscillator is space

filling.
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V. THE ANHARMONIC, ONE DIMENSIONAL, HARMONIC OSCILLATOR

Tn this Section I want to discuss anharmonic perturbations and since the

harmonic oscillator problem separates in rectangular coordinates, one

dimension is sufficient. The unperturbed equations of motion are

• " n2
mx -kx ,n k/m

whose general solution is

x = Acosnt+Bsinnt

The perturbed equations of motion are

mx = -kx - nkx3

so R = -nn2x4 /4 (I could've chosen a quadratic form for the anharmonic term

but this choice simplifies the analysis somewhat). The basis for the pertur-

bation theory is a = (A,B). The only non-zero Lagrange bracket is [A,B] =

-[B,A] = n. The variation of parameter equations are

A =-(/n)@R/@B, B = (I/n)aR/aA

Since R = -nnx/4,
R = (-nn2/4) (Acosnt+Bsinnt)4

or

= nnsinnt (Acosnt+Bsinnt)
3

B -nncosnt (Acosnt+Bsinnt)
3

Let A',B' be the first order set of results from Picard's method, viz.
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A' (t)=A(O)+(n/32)[8A 3 (O) (-cos 4nt)+3A 2(O)B(O)(4nt-sin4nt)
2 4 3+24A(O)B (O)sin nt+B (O)(2nt-8sin2nt+sin4nt))

B' (t)=B(O)-(r/32)[A (O)(l2nt+8sin2nt+sin4nt)+24A (O)B(O)(l-cos nt)

+3A(O)B (O)(4nt-sin4nt)+8B (Osin nt]j

Clearly the next approximation, obtained from

A"' nnsinnt(A'cosnt+B'sinnt)3

3B"=-rncosnt(A'cosnt+B' sinnt)

results in powers of n of order 4 not just order 2. Just as clearly an]
anhaniionic perturbation in the equation of motion of the form -nkx~ P- results

in A",B" containing terms of the form nP. I hope that this result clearly

illustrates the difference between the order (in the sequence of successiveI

approximations) of the solution and the functional form or highest power

present of a small parameter.

The perturbation equations can be solved analytically. To see how

define a and 8via

=Acosnt+Bsinnt

8=-Asinnt+Bcosnt

Then, because of the condition of osculation,

=t na, 6 -nct rnc

or

2 2 3a -n a -n
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A first integral is

-2 =,2 2_ 2 2 4_ 4a n (L ac + (nn /2)(L ac

if the initial conditions are x(O)=L, x(O)0O. Other initial conditions do

not yield more transparent solutions or allow me to make additional analytical

points.

The solution for ax is

ax Lcn~nt(l+iL2 k1 2 f]

k= 2 /2 2n eOl

where cn is the cosine-amplitude Jacobian elliptic function. Since a = c/n,

-L(l+nL) sn[nt(1+TiL )~ nnt n 21/

where sn is the sine-amplitude Jacobian elliptic function and dn is the

delta-amplitude Jacobian elliptic function. The solutions for A and B are

[mrnnt(l+iL 2 )1/2]

AlL = cosntcn(m4k)+(l+nL 2) 1 2sinntsn(m,z)dn(m,a)

B/L = sinntcn(m,fk)-(l+nL ) 1 cosntsn(m,),dn(m,k)

As m+O

2 2

2sn(m,k)-sinm-(Ik/2) cosm(m-sinmcosm)

6cn(m,k)-*cosm+(Iz/2) 2sinm(m-slnmcosm)

dn(m,)- I -.(k2/2) 2sin m
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By some laborious algebra one can show that the first order Taylor series

expansions of A and B exactly match the expressions for A' and B'[A(O) =

L,B =0]. Clearly the statement is not true for the second order Taylor

series since A" and B" contain terms proportional to n4 . I don't know

if the fourth order Taylor series expansions of A and B would match A" and

B"--I have only a finite amount of patience (I would bet on it though).

Lastly let me mention that the original equations of motion are exactly

soluble too. For x(O)=L, x(O)=O the solution is

x = Lcn(m,k)

Lcosnt as n-0 
t

while for x(O)=O, x(O)>O it is

x = (L2+2/n)1/2 sn(m,k)/dn(m,k)

where max(x)=L. As rr 0 this approaches Lsinnt. The general solution is not

a linear combination of these two (it's anharmonic) nor is it worth displaying.

3i
" 
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VI. CONCLUDING REMARKS

Another way of writing the general solution to the harmonic oscillator

(one dimensional for the moment) is

x =Ccos(nt+ )

The Lagrange bracket [C,]--- nC and the perturbation equations are

- nC$ -- R/aC, nCC DR/a=

But R is time dependent for either anharmonic or anisotropic perturbations.

This obviously complicates the solution and I haven't explored this alterna-

•tive in depth. Another thing I haven't done is derive the analog of Gauss's

equations for non-conservative perturbations. As an example if there is a

drag term,

mx = -kx - 2myx

then the general solution can be written as (I've assumed that y is small

compared to n, n2 - k/m still)

x = (Acosvt + Bsinvt)eYt

where v n2-y2 . It would be interesting to pursue this problem and see

where else the usual form of perturbation theory in celestial mechanics let's

us down.

An even more interesting generalization would be the simple harmonic

oscillator subject to drag and an external, periodic force. ihe equation of

motion would then be (say)

40
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m= -kx - 2myi + Fcos(wt+O)

As you'll remember the steady state solution involves a resonance. The

phase of x is offset from that of the external force by

tan* 2=
n -w

and the amplitude of x is (F/m)/[(n2 -w2)2 + 4y2w2 ]l/2 . When the atmospheric

2drag is small, there is resonance at w = n-y /A. I wonder what classical

perturbation theory would do with this.
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